Texture Retrieval from VHR Optical Remote Sensed Images Using the Local Extrema Descriptor with Application to Vineyard Parcel Detection
نویسندگان
چکیده
In this article, we develop a novel method for the detection of vineyard parcels in agricultural landscapes based on very high resolution (VHR) optical remote sensing images. Our objective is to perform texture-based image retrieval and supervised classification algorithms. To do that, the local textural and structural features inside each image are taken into account to measure its similarity to other images. In fact, VHR images usually involve a variety of local textures and structures that may verify a weak stationarity hypothesis. Hence, an approach only based on characteristic points, not on all pixels of the image, is supposed to be relevant. This work proposes to construct the local extrema-based descriptor (LED) by using the local maximum and local minimum pixels extracted from the image. The LED descriptor is formed based on the radiometric, geometric and gradient features from these local extrema. We first exploit the proposed LED descriptor for the retrieval task to evaluate its performance on texture discrimination. Then, it is embedded into a supervised classification framework to detect vine parcels using VHR satellite images. Experiments performed on VHR panchromatic PLEIADES image data prove the effectiveness of the proposed strategy. Compared to state-of-the-art methods, an enhancement of about 7% in retrieval rate is achieved. For the detection task, about 90% of vineyards are correctly detected.
منابع مشابه
Texture and Color-based Image Retrieval Using the Local Extrema Features and Riemannian Distance
A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted at characteristic points (i.e. keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the t...
متن کاملContent Based Leaf Image Retrieval (cblir) Using Shape, Color and Texture Features
This paper proposes an efficient computer-aided Plant Image Retrieval method based on plant leaf images using Shape, Color and Texture features intended mainly for medical industry, botanical gardening and cosmetic industry. Here, we use HSV color space to extract the various features of leaves. Log-Gabor wavelet is applied to the input image for texture feature extraction. The Scale Invariant ...
متن کاملColor Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance
A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between th...
متن کاملUsing Texture to Annotate Remote Sensed Datasets
Texture remains largely underutilized in the analysis of remote sensed datasets compared to descriptors based on the orthogonal spectral dimension. This paper describes our recent efforts towards using texture to automate the annotation of remote sensed imagery Two applications are described that use the homogeneous texture descriptor recently standardized by MPEG-7. In the Jirst, higher-level ...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016